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Abstract. We propose an entropy stable high-resolution finite volume scheme to ap-
proximate systems of two-dimensional symmetrizable conservation laws on unstruc-
tured grids. In particular we consider Euler equations governing compressible flows.
The scheme is constructed using a combination of entropy conservative fluxes and
entropy-stable numerical dissipation operators. High resolution is achieved based on
a linear reconstruction procedure satisfying a suitable sign property that helps to main-
tain entropy stability. The proposed scheme is demonstrated to robustly approximate
complex flow features by a series of benchmark numerical experiments.
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1 Introduction

Systems of conservation laws are encountered in numerous fields of science and engi-
neering. Examples include the shallow water equations of oceanography, the Euler equa-
tions of aerodynamics and the MHD equations of plasma physics. In two space dimen-
sions, a generic system of conservation laws is given by

∂tU+∂xf1(U)+∂yf2(U)=0 ∀ x=(x,y)∈R
2, t∈R

+

U(x,0)=U0(x) ∀ x∈R
2. (1.1)
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In the above equations, the vector of conserved variables is denoted by U : R
2×R

+ →
R

n, f1,f2 are the Cartesian components of the flux vector and U0 is the prescribed initial
condition. In particular, for the two-dimensional compressible Euler equations, we have

U=




ρ
ρu
ρv
E


, f1(U)=




ρu
ρu2+p

ρuv
u(E+p)


, f2(U)=




ρv
ρuv

ρv2+p
v(E+p)


, (1.2)

where ρ, u= (u,v)⊤ and p denote the fluid density, velocity and pressure, respectively.
The quantity E is the total energy per unit volume

E=ρ

(
1

2
(u2+v2)+e

)
, (1.3)

where e is the specific internal energy given by a caloric equation of state, e= e(ρ,p). In
this work, we take the equation of state for ideal gas as given by

e=
p

(γ−1)ρ
(1.4)

with γ= cp/cv denoting the ratio of specific heats.
It is well known that solutions to systems of conservation laws can develop discon-

tinuities, such as shock waves and contact discontinuities, in finite time even when the
initial data is smooth [11]. Hence, the solutions of systems of conservation laws are inter-
preted in a weak (distributional) sense. However, these weak solutions are not necessar-
ily unique, and must be supplemented with additional conditions, known as the entropy
conditions, in order to single out a physically relevant solution. Assume that for the sys-
tem (1.1), there exists a convex function η : R

n →R and functions qi : R
n →R, i=1,2 such

that
q′i(U)=η′(U)⊤f′i(U), i=1,2. (1.5)

The function η is known as an entropy function, while q1, q2 are the entropy flux functions.
Additionally, V=η′(U) is called the (vector of) entropy variables. Multiplying (1.1) by V⊤

results in the following additional conservation law for smooth solutions:

∂tη(U)+∂xq1(U)+∂yq2(U)=0. (1.6)

The entropy condition states that weak solutions should satisfy the entropy inequality

∂tη(U)+∂xq1(U)+∂yq2(U)60, (1.7)

which is understood in the sense of distributions.
The convexity of η(U) ensures the existence of a one-to-one mapping between U and

V, thus allowing the change of variables U=U(V). The hyperbolic system (1.1) is sym-
metrized when written in terms of the entropy variables. In other words, for the trans-
formed system

∂VU∂tV+∂Vf1∂xV+∂Vf2∂yV=0
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the Jacobian ∂VU is symmetric positive definite, while ∂Vf1,∂Vf2 are symmetric. In this
direction, we have the important results due to Godunov [20] and Mock [34], which state
that the hyperbolic system (1.1) is symmetrizable if and only if it is equipped with an
entropy function η(U) and corresponding entropy fluxes q1(U),q2(U).

Although no global existence and uniqueness results for entropy solutions of these
systems are currently available, the entropy conditions do play an important role in pro-
viding global stability estimates. Formally integrating (1.7) in space and ignoring the
boundary terms by assuming periodic or no-inflow boundary conditions, we get

d

dt

∫

R2

η(U)dx60 =⇒
∫

R2

η(U(x,t))dx6

∫

R2

η(U0(x))dx, ∀ t>0. (1.8)

As η is convex, the above entropy bound gives rise to an a priori estimate on the solution
of (1.1) in suitable Lp spaces [11].

Numerical methods for hyperbolic systems have undergone extensive development
over the past few decades. Finite volume methods, in which the computational domain
is divided into control volumes and a discrete version of the conservation law imposed
on each control volume, are very popular. In particular, (approximate) Riemann solver
based numerical flux functions, non-oscillatory reconstructions of the TVD, ENO, WENO
type and strong stability preserving Runge-Kutta methods constitute an attractive and
widely used package for the robust approximation of systems of conservation laws. An
alternative is the use of Runge-Kutta Discontinuous Galerkin (DG) finite element meth-
ods [9] together with limiters to obtain non-oscillatory approximation.

Although many rigorous convergence results for these methods (at least for their first
and second-order versions) are known for scalar conservation laws, even in several space
dimensions (see [29, 30] and references therein), very few rigorous results are available
for schemes approximating systems of conservation laws, particularly in several space
dimensions. Since obtaining rigorous convergence results of numerical approximation
to entropy solutions seems out of reach currently (see [18] for a discussion on this issue)
the design of entropy stable schemes – numerical schemes that satisfy a discrete form of the
entropy inequality (1.7) – is a reasonable goal. Note that entropy stable schemes auto-
matically satisfy an Lp estimate and provide the only global stability estimates currently
available for numerical methods for multi-dimensional conservation laws.

The construction of entropy stable schemes for systems of conservation laws was pio-
neered by Tadmor in [44]. The construction is based on two ingredients – (i) construction
of an entropy conservative flux satisfying a discrete entropy equality, and (ii) addition of
suitable dissipation operators to satisfy a discrete entropy inequality. First-order entropy
stable schemes, in which the solution is assumed to be piecewise constant in the cells,
have been tested by Fjordholm et al. [15] for the shallow-water equations and by Roe and
Ismail [24] for the Euler equations on Cartesian meshes, and found to be efficient. High-
order accurate schemes are constructed by reconstructing the solution in each cell by a
polynomial. Arbitrarily high-order entropy conservative fluxes for Cartesian grids were
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developed in [31]. However, the design of arbitrary-high-order entropy stable schemes
was only carried out recently by Fjordholm et al. in [16]. These so-called TeCNO schemes
judiciously combine high-order entropy conservative fluxes with arbitrarily high-order
numerical diffusion operators, based on piecewise polynomial reconstruction. The recon-
structions have to satisfy a sign property at each interface to ensure entropy stability. This
means that the jump in the reconstructed values at every cell face must have the same sign
as the jump in the corresponding cell values. It was shown in [17] that the standard ENO
reconstruction procedure does satisfy the sign property. The resulting TeCNO schemes
are only available for Cartesian (structured) grids in several space dimensions. However,
many applications of interest, particularly in engineering, involve domains with complex
geometry [13, 26] which can be more easily discretized using unstructured grids.

The construction of high resolution, entropy stables schemes on unstructured grids
is not as mature, which is the main aim of this paper. In [32], a first-order finite volume
scheme was constructed in the framework of cell-centered schemes, where the solution
is stored at the center of the cells. It does not seem to be possible to extend this approach
to high resolution while at the same time maintaining the sign property and the accuracy
of the scheme. In this work, we use a vertex-centered finite volume scheme where the
solution is stored at the vertices of the mesh and a dual cell is constructed around each
vertex on which the conservation law is satisfied [1, 2, 33, 35, 42, 49]. The high resolution
scheme is constructed by using a reconstruction process to obtain the solution values at
the faces of the cells. In the literature, there are several approaches to perform this recon-
struction [5,6,10,14,28,35,39,40,46–48]. We use a simple approach for reconstruction, (see
e.g., chapter IV - section 5.1 of [19]), but this process is combined with the structure of the
dissipation operator so that the sign property can be satisfied. We hence construct a semi-
discrete, high resolution scheme which is entropy stable on general triangulations. The
fully discrete scheme is obtained by using a Runge-Kutta scheme for time integration.

The rest of the paper is organized as follows. In Section 2 we describe the discretiza-
tion of the domain and introduce the general semi-discrete scheme for system of conser-
vation laws. Section 3 introduces the machinery for construction of entropy conserva-
tive and entropy stable schemes. Construction of higher-order entropy stable schemes
by the limited reconstruction of scaled entropy variables is also discussed. Several two-
dimensional numerical results are presented in Section 4 to demonstrate the robustness
of the proposed schemes. Concluding remarks are made in Section 5.

2 Mesh and finite volume scheme

The domain Ω⊂R
2 is discretized using disjoint triangles T with nodes denoted by i, j,k,

etc., which forms the primary mesh. For each edge of a triangle, we define the outward
normal vectors with magnitude equal to the length of the corresponding edge. We use
the notation nT

i to describe the outward normal to the edge of T which is opposite to the
vertex i. Furthermore, for each boundary edge e we denote the triangle adjacent to it by
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Figure 1: Triangle T and Te with outward normals.

Te and the outward normal to the edge e as ne. These are depicted in Fig. 1.

Around each vertex i, the dual cell is constructed by joining the centroids of each
adjoining triangle to the mid-points of its edges. This is known as the median dual cell [2,
42,49]. The Voronoi dual cells can also be generated in a similar manner by joining the mid-
point of the triangle edges to the circumcenters instead of the centroids [1, 33]. Examples
of primary meshes and corresponding dual meshes are depicted in Fig. 2. We adopt the
vertex-centered approach for the finite volume schemes discussed below, where the dual
cells are chosen as the control volumes and the solution (cell average) is stored at the
nodes.

(a) (b) (c)

Figure 2: Mesh (a) primary; (b) median dual; (c) Voronoi dual.

Consider the dual cell Ci around vertex i as shown in Fig. 3. If j is a vertex connected
to vertex i, then define

nij=
∫

∂Ci∩∂Cj

ñds=n
(1)
ij +n

(2)
ij ,

where ñ is the unit normal vector to the faces of dual cell Ci common with the dual cell
Cj. The quantity nij has units of length. The notation j∈ i will denote the set of vertices
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Figure 3: Dual cell interface and normal.

j neighbouring the vertex i, i.e., which are connected to vertex i through an edge. The
semi-discrete finite volume scheme corresponding to (1.1) is given by

dUi

dt
+

1

|Ci|
∑
j∈i

Fij=0, (2.1)

where Ui is the cell average over the dual cell Ci and Fij = F(Ui,Uj,nij) is the numerical
flux function satisfying the following properties.

1. Consistency:
F(U,U,n)= f(U,n), ∀ U,n.

2. Conservation:

F(U1,U2,n)=−F(U2,U1,−n), ∀ U1,U2,n.

Here, we have denoted f(U,n) := f1(U)n1+f2(U)n2.

3 Entropy conservative and entropy stable schemes

As mentioned in the introduction, we aim to construct an entropy stable scheme to ap-
proximate (1.1). Following Tadmor [43] and the recent paper [32], the first step is the
design of an entropy conservative scheme, as outlined below.

3.1 Entropy conservative scheme

Definition 3.1. The numerical scheme (2.1) is said to be entropy conservative if it satisfies
the discrete entropy relation

dη(Ui)

dt
+

1

|Ci|
∑
j∈i

q∗ij =0, (3.1)

where q∗ij is a consistent numerical entropy flux.
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We introduce the following notation

∆(·)ij =(·)j−(·)i, (·)ij=
(·)i+(·)j

2
.

Moreover, we introduce the entropy potential

ψ(U,n) :=V(U)⊤F(U,n)−q(U,n),

where q(U,n) :=q1(U)n1+q2(U)n2. The next theorem gives a sufficient condition on the
numerical flux which makes the scheme entropy conservative, which is a variant of the
result in [32] for cell-centered schemes.

Theorem 3.1. The numerical scheme (2.1) with the flux F∗ is entropy conservative if

∆V⊤
ij F∗

ij =ψ(Uj,nij)−ψ(Ui,nij). (3.2)

Specifically, it satisfies (3.1) with numerical entropy flux given by

q∗ij =q∗(Ui,Uj,nij)=V
⊤
ij F∗

ij−
1

2

(
ψ(Uj,nij)+ψ(Ui,nij)

)
.

Proof. Multiplying (2.1) by the entropy variables Vi, we get

d

dt
η(Ui)=−

1

|Ci|
∑
j∈i

V⊤
i F∗

ij

=−
1

|Ci|
∑
j∈i

(
Vij−

1

2
∆Vij

)⊤

F∗
ij

=−
1

|Ci|
∑
j∈i

(
V

⊤
ij F∗

ij−
1

2

(
ψ(Uj,nij)−ψ(Ui,nij)

))

=−
1

|Ci|
∑
j∈i

(
V

⊤
ij F∗

ij−
1

2

(
ψ(Uj,nij)+ψ(Ui,nij)

))
−

1

|Ci|
∑
j∈i

ψ(Ui,nij)

=−
1

|Ci|
∑
j∈i

q∗ij,

where we have used the fact that ∑j∈i ψ(Ui,nij)=0 since ∑j∈i nij=0.

Harten [22] has shown that the Euler equations are equipped with a family of entropy-
entropy flux functions of the form

η(U)=−
ρh(s)

γ−1
, q1(U)=−

ρuh(s)

γ−1
, q2(U)=−

ρvh(s)

γ−1

with an additional constraint h′′/h′<γ−1 to enforce convexity of η. Here s=ln(p)−γln(ρ)
is the non-dimensional specific entropy. Hughes et al. [23] have shown that this form of
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entropy-entropy flux functions can be extended to the Navier-Stokes equations, where
the symmetrization of the heat conduction term puts the restriction that h(s) can be at
most affine. A convenient choice which we adhere to for the rest of this paper is

η(U)=−
ρs

γ−1
, q1(U)=−

ρus

γ−1
, q2(U)=−

ρvs

γ−1
. (3.3)

The corresponding entropy variables V are given by

V=
(

γ−s
γ−1−β|u|2, 2βu, −2β

)⊤
, (3.4)

where β=ρ/(2p). Next, we briefly describe two important examples of entropy conser-
vative fluxes which have been designed for the Euler equations.

Example 3.1. Roe and Ismail [24] have constructed a numerical flux for the Euler equa-
tions satisfying (3.2). They introduce the parameter vector

Z=

√
ρ

p

(
1, u, v, p

)⊤

and write the entropy conservative flux in terms of Z as follows.

F∗
ij =




F∗,ρ

F∗,m1

F∗,m2

F∗,e


=




ZnẐ4
Z4

Z1
n1+

Z2

Z1
F∗,ρ

Z4

Z1
n2+

Z3

Z1
F∗,ρ

F∗,e




, F∗,e=
1

2Z1

[
(γ+1)

(γ−1)

F∗,ρ

Ẑ1

+Z2F∗,m1+Z3F∗,m2

]
,

where
Zn =Z2n1+Z3n2

and φ̂ij =
φj−φi

ln(φj)−ln(φi)
is the logarithmic average which is well defined for strictly positive

quantities φ.

Example 3.2. An entropy conservative flux for the Euler equations, which also preserves
kinetic energy was introduced in [8]. This is given by

F∗=




F∗,ρ

F∗,m1

F∗,m2

F∗,e


=




ρ̂un

p̃n1+uF∗,ρ

p̃n2+vF∗,ρ

F∗,e


, F∗,e=

[
1

2(γ−1)β̂
−

1

2
|u|2

]
F∗,ρ+u·F∗,m, (3.5)

where

un =un1+vn2, p̃=
ρ

2β

and ρ̂, β̂ are the logarithmic averages of the respective quantities. The crucial property for
kinetic energy preservation as given by Jameson [27], is that the momentum flux should
be of the form Fm=pn+uFρ for any consistent approximations for the pressure p and the
mass flux Fρ.
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Remark 3.1. Entropy conservative fluxes described above can be shown to be second-
order accurate on cartesian meshes, in terms of the local truncation [44]. The same proof
can be used to show the validity of this result for the vertex-centered setup on unstruc-
tured meshes.

3.2 First-order entropy stable scheme

The entropy of hyperbolic conservation laws is conserved only if the solution is smooth.
However, entropy is dissipated near discontinuities like shocks, in accordance to the en-
tropy condition (1.7). It is well known [44] that an entropy conservative scheme, although
suitable for smooth solutions, can be very oscillatory at shocks. Hence, we need to intro-
duce additional dissipation terms to construct entropy stable schemes.

Definition 3.2. The numerical scheme (2.1) is said to be entropy stable if it satisfies the
discrete entropy relation

dη(Ui)

dt
+

1

|Ci|
∑
j∈i

qij 60, (3.6)

where qij is a consistent numerical entropy flux.

To dissipate entropy we follow [16, 44] and add entropy variable-based numerical
dissipation to the entropy conservative numerical flux F∗

ij in the form

Fij =F∗
ij−

1

2
Dij∆Vij (3.7)

for a symmetric positive semi-definite matrix Dij, i.e., Dij =D⊤
ij >0. The diffusion matrix

must also satisfy Dij=Dji to ensure that the numerical flux is conservative. The following
lemma has been proved for the cell-centered setup in [32], which we adapt for vertex-
centered schemes.

Lemma 3.1. The semi-discrete numerical scheme (2.1) with numerical flux given by (3.7) is
entropy stable; specifically, it satisfies the discrete entropy inequality (3.6) with numerical entropy
flux given by

qij =q∗ij−
1

2
V

⊤
ij Dij∆Vij.

Proof. Multiplying (2.1) by Vi and following the algebraic manipulations similar to those
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in Theorem 3.1, we get

d

dt
η(Ui)=−

1

|Ci|
∑
j∈i

V⊤
i Fij

=−
1

|Ci|
∑
j∈i

[
q∗ij−

1

2

(
Vij−

1

2
∆Vij

)⊤

Dij∆Vij

]

=−
1

|Ci|
∑
j∈i

qij−
1

4|Ci|
∑
j∈i

∆V⊤
ij Dij∆Vij

6−
1

|Ci|
∑
j∈i

qij

since ∆V⊤
ij Dij∆Vij > 0. Moreover it is easy to see that qij as defined in the theorem is a

consistent numerical entropy flux.

3.3 Dissipation operator

To construct the dissipation matrix Dij we take inspiration from Roe’s approximate Rie-
mann solver [38], which is based on the linearization of the nonlinear conservation law
about some average state. The numerical flux of the Roe scheme has the form

Fij=
1

2

(
f(Ui,nij)+f(Uj,nij)

)
−

1

2
RijΛijR

−1
ij ∆Uij, (3.8)

where R=R(U,n) is the matrix of eigenvectors of the flux Jacobian ∂Uf(U,n) and Λ=
Λ(U,n) is the non-negative diagonal matrix

Λ=diag
(
|λ1|,··· ,|λn|

)
(3.9)

with λk being the eigenvalues of the flux Jacobian. These matrices and eigenvalues are
evaluated at some average state.

The dissipation in (3.8) can be written approximately in terms of the jump in the
entropy variables, by linearizing the jump in the conserved variables as ∆U= ∂VU∆V,
where the Jacobian ∂VU is symmetric positive definite [44]. The eigenvector rescaling
theorem of Barth [4] ensures the existence of a scaling of the eigenvectors R→ R̃, such
that ∂VU= R̃R̃⊤. The Roe-type flux can thus be re-written as

Fij =
1

2

(
f(Ui,nij)+f(Uj,nij)

)
−

1

2
R̃ijΛijR̃

⊤
ij ∆Vij.

This motivates us to choose the Roe-type diffusion operator [16]

Dij = R̃ijΛijR̃
⊤
ij (3.10)
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which is clearly symmetric positive semi-definite. For convenience we will drop the (̃.)
notation for the remainder of this paper, where it will be understood that Rij denotes the
scaled eigenvectors. The matrices are evaluated at some average state depending on Ui

and Uj. The specific form of the matrices chosen for the Euler equations are described in
Appendix A.

Remark 3.2. The Roe type dissipation operator, as chosen above, is just one of a whole
host of alternatives when it comes to the choice of numerical dissipation operators [16].
In particular, we can choose Λ=maxi |λi|I to obtain a Rusanov type diffusion operator.
Further examples of polynomial viscosity operators are provided in [16].

The dissipation of (numerical) entropy, especially near shocks, is of vital importance
from the point of view of quality of the solution profile. The solution near shocks is
oscillatory or smeared out, if the entropy content in the shock is too high or too low
respectively. To ensure the correct rate of entropy dissipation, Roe and Ismail [24] have
introduced the notion of entropy consistency, and suggested the following modification of
the dissipation operator for the Euler equations

Λ
mod
ij =Λij+αECΛ̃ij, Λ̃ij =diag

(
∆(un−a)ij,0,0,∆(un+a)ij

)
. (3.11)

Based on weak shock assumptions, the value αEC=1/6 has been suggested in [24].

3.4 High-order diffusion operators

For smooth solutions ∆Vij =O(|∆xij |) so that the diffusion term in schemes of the form
(3.7) is just first-order accurate. The first-order scheme is a consequence of taking the so-
lution to be constant in each cell and equal to the cell average value. In order to obtain a
higher-order scheme, we need to appropriately reconstruct the solution to the cell inter-
faces. Consider the cell interface between two control volumes Ci and Cj. Corresponding
to this particular cell interface, let Vij and Vji be the reconstructed values of V from cell
Ci and Cj respectively, and define the jump at the interface by

JVKij=Vji−Vij. (3.12)

We will use the above higher-order jump in the numerical flux (3.7) instead of ∆Vij. If the
reconstruction is exact for affine functions, then JVKij =O(∆xij)

2 for smooth functions.
The following lemma (proved for Cartesian meshes in [16]) gives sufficient conditions on
the reconstruction which ensures that the entropy stability of the scheme is preserved.

Lemma 3.2. For each pair of vertices (i, j) which are connected to one another, let Rij be non-
singular, let Λij be any non-negative diagonal matrix, and define the numerical diffusion matrix

Dij =RijΛijR
⊤
ij .
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Let Vij and Vji be the reconstructed values of the entropy variables at the interface between Ci and
Cj respectively. Assume that the reconstruction ensures the existence of a diagonal matrix Bij>0
such that

JVKij=
(
R⊤

ij

)−1
BijR

⊤
ij ∆Vij. (3.13)

Then the scheme with the numerical flux

Fij =F∗
ij−

1

2
DijJVKij (3.14)

is entropy stable with numerical entropy flux

qij :=q∗ij−
1

2
V

⊤
ij DijJVKij.

Proof. As in the proof of Lemma 3.1, consider (2.1) with the flux defined by (3.14) and
multiply it by the entropy variables Vi to get

d

dt
η(Ui)=−

1

|Ci|
∑
j∈i

V⊤
i Fij

=−
1

|Ci|
∑
j∈i

q∗ij+
1

2|Ci|
∑

j∈Ni

[(
Vij−

1

2
∆Vij

)⊤

DijJVKij

]

=−
1

|Ci|
∑
j∈i

[
q∗ij−

1

2
V

⊤
ij DijJVKij

]
−

1

4|Ci|
∑
j∈i

∆V⊤
ij RijΛijBijR

⊤
ij ∆Vij.

Since RijΛijBijR
⊤
ij is symmetric positive semi-definite, we get

d

dt
η(Ui)+

1

|Ci|
∑
j∈i

qij 60.

This completes the proof.

Remark 3.3. The quantities Rij, Λij are evaluated at some average value corresponding to
Vi, Vj. Note that F∗

ij =F∗(Vi,Vj,nij), i.e., it is evaluated using the solution at the vertices

and only the dissipation flux makes use of the reconstructed values. Since both F∗
ij and

the dissipation flux are second-order accurate, the numerical flux Fij is also second-order
accurate for smooth solutions.

3.4.1 Reconstruction procedure

In order to use Lemma 3.2, we describe a reconstruction procedure that satisfies (3.13).
For each cell interface described by the neighbouring vertices i and j, define the scaled
entropy variables Z = R⊤

ij V. Let Zij, Zji be the reconstructed values of Z at the interface

from cell Ci and Cj respectively. Then define

Vij=(R⊤
ij )

−1Zij, Vji =(R⊤
ij )

−1Zji =⇒ JVKij=(R⊤
ij )

−1JZKij.
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Thus, the dissipation terms in the flux given by (3.14) can be written in terms of the scaled
entropy variables as

DijJVKij =RijΛijJZKij.

The condition given by (3.13) can now be interpreted in terms of the scaled variables as

JZKij=Bij∆Zij

for some diagonal matrix Bij with non-negative entries. Componentwise, this further
reduces to a sign property on the n different components of Z:

sign
(
JZKij

)
=sign

(
∆Zij

)
. (3.15)

We now describe a slope-limited linear reconstruction procedure of scaled entropy
variables appearing in the dissipation terms, which satisfies the sign property. For neigh-
bouring control volumes Ci and Cj, the scaled entropy variables with respect to the inter-
face between nodes i and j are given by

Zi=R⊤
ij Vi, Zj=R⊤

ij Vj. (3.16)

In order to perform the reconstruction we need more information along the line joining
vertices i and j so that we can get some information about the smoothness of the function.
Let us extend the line by an equal length on either side to obtain the additional nodes i−1
and j+1 (Fig. 4(a)). If the values Zi−1, Zj+1 are known, then define following differences

• The forward differences

∆
f
ij =∆Zij, ∆

f
ji =Zj+1−Zj. (3.17)

• The backward differences

∆b
ij =Zi−Zi−1, ∆b

ji =∆Zij. (3.18)

The reconstructed values of Z at the interface are given by

Zij =Zi+
1

2
M

(
∆

f
ij,∆

b
ij

)
, Zji =Zj−

1

2
M

(
∆

f
ji,∆

b
ji

)
, (3.19)

where we have used the minmod slope limiter function

M(a,b)=

{
smin(|a|,|b|) if s :=sign(a)=sign(b),

0 otherwise.

There are several methods available in the literature to obtain the additional information
Zi−1 and Zj+1, which need not correspond to actual points in the mesh.
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i

ji− 1 j + 1

i

jTij Tji

(a) (b)

Figure 4: Stencil for linear reconstruction (a) extension and interpolation, (b) extension into up-
stream/downstream triangles.

• The values at the nodes i−1 and j+1 can be evaluated through continuation and
interpolation from neighbouring nodes [6], as shown in Fig. 4(a).

• The differences ∆b
ij and ∆

f
ji can be estimated if we know the gradients of Z at the

nodes [50].

• For the edge joining the nodes i and j, one considers the upstream and downstream
triangles Tij and Tji through which the extended edge would pass (see Fig. 4(b)).
The gradients evaluated on these triangles can be used instead of nodal gradients
[3, 6, 39].

In our reconstruction procedure, we shall use nodal gradients to evaluate the differences
as follows.

∆
f
ji =Zj+1−Zj =2∇hZj·(xj−xi)−∆Zij, (3.20)

∆b
ij =Zi−Zi−1=2∇hZi·(xj−xi)−∆Zij. (3.21)

The procedure used to approximate the gradients at the nodes, is described in Section 3.4.2.

Lemma 3.3. The reconstruction of the scaled entropy variables described by (3.19), (3.17) and
(3.18) satisfies the sign property (3.15).

Proof. For any component Z of Z, the reconstruction scheme gives

Zji−Zij =(Zj−Zi)−
1

2

[
M

(
∆

f
ji,∆

b
ji

)
+M

(
∆

f
ij,∆

b
ij

)]
.

If Zj−Zi>0, then

M
(

∆
f
ij,∆

b
ij

)
6∆

f
ij, M

(
∆

f
ji,∆

b
ji

)
6∆b

ji =∆
f
ij.

Thus,

Zji−Zij> (Zj−Zi)−
1

2

[
2∆

f
ij

]
=0.
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Similarly, if Zj−Zi60, then

M
(

∆
f
ij,∆

b
ij

)
>∆

f
ij, M

(
∆

f
ji,∆

b
ji

)
>∆b

ji =∆
f
ij

giving us

Zji−Zij6 (Zj−Zi)−
1

2

[
2∆

f
ij

]
=0.

Hence, the reconstruction satisfies the sign property.

Remark 3.4. The above reconstruction with the minmod limiter is one possible option
which has the sign property. One could instead use the second-order ENO scheme (ENO-
2), which also satisfies the sign property. Note that the ENO-2 scheme reduces to the
minabs limiter. Numerical tests have yielded almost indistinguishable results with both
minmod and ENO-2 reconstruction. Thus, we adhere to presenting results with the min-
mod limiter.

Remark 3.5. Either of the reconstruction methods described above would lead to the sign
property, when used with the minmod or minabs limiter. What is crucial to obtain the

sign property is that we evaluate ∆
f
ij =∆b

ji =∆Zij.

3.4.2 Computation of gradients

The second-order limited reconstruction described above requires the evaluation of nodal
gradients of scaled entropy variables. We evaluate these gradient as

∇hZi =R⊤
ij ∇hVi, (3.22)

where ∇hVi must be numerically approximated. Consider the node i and the set of neigh-
bouring primary triangular cells denoted by T∈ i, as shown in Fig. 5. Using the Green’s

i

T

T

1

2

3

n
T
1n

T
2

n
T
3

(a) (b)

Figure 5: (a) Stencil for gradient evaluation at node i, (b) neighbouring triangle T.
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theorem combined with trapezoidal rule for integration [1, 12], the gradient on each tri-
angle T is approximated by

∇hVT =−
1

2|T|

(
V1⊗nT

1 +V2⊗nT
2 +V3⊗nT

3

)
, (3.23)

where X⊗Y=
(
XmYn

)
m,n

denotes the outer product. This approximation is exact for affine

functions, and thus second-order accurate. Finally, the gradient at node i is approximated
as

∇hVi=

∑
T∈i

|T|∇hVT

∑
T∈i

|T|
(3.24)

which is exact for affine functions and hence is second-order accurate.

Remark 3.6. In actual implementation of the scheme, we never compute Vij, Vji which
would be expensive since it requires the inversion of the matrix Rij. The numerical flux
can be directly computed as

Fij =F∗
ij−

1

2
RijΛij

(
Zji−Zij

)
(3.25)

thus avoiding some costly operations.

Remark 3.7. One could also approximate ∇hZi and ∇hZT directly from the scaled en-
tropy variables at each node. Since the scaling depends on the particular dual mesh
interface at which the reconstruction is being performed, this would require the compu-
tation of several nodal and triangular gradients for each node and triangle. In order to
avoid this additional computational cost and storage requirement, we simply scale the
gradients evaluated for the original entropy variables, as given by (3.22).

4 Numerical results

We now present the numerical results of the scheme discussed above on several stan-
dard two dimensional test cases. We introduce the following nomenclature for various
schemes that are tested in this section. The base scheme shall be the kinetic energy pre-
serving and entropy conservative scheme from Example 3.2.

• KEPES: The base scheme with first-order entropy variable based dissipation oper-
ator. This corresponds to the scheme (3.7) with the dissipation operator given by
(3.9) and (3.10).

• KEPES-TeCNO: The base with second-order limited reconstruction of the scaled
entropy variables. The scheme has the form given by (3.25) with the reconstructed
(limited) states chosen in accordance to (3.19).
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• KEPES2: The scheme (3.25) with a pure second-order reconstruction of the scaled
entropy variables without limiting

Zij=Zi+
1

2
∇hZi·(xj−xi), Zji =Zj−

1

2
∇hZj·(xj−xi).

Note that KEPES2 is not necessarily entropy stable as the unlimited reconstruction need
not satisfy the sign property. The numerical results are also compared with the results
obtained using the original Roe scheme [38].

The semi-discrete scheme is integrated in time using the explicit Strong Stability Pre-
serving Runge-Kutta 3-stage scheme (SSP-RK3) method [21]. The Lower-Upper Sym-
metric Gauss Seidel method (LU-SGS) [7] is used for implicit time integration, and is
preferred for steady problems as it allows larger time steps. In all test cases we consider
the ideal gas with γ= 1.4 except when indicated otherwise. Additionally, we define the
Mach number of the flow as M= a/|u|, where a=

√
γp/ρ is the speed of sound in air.

The Mach number is used to describe various flow regimes: the flow is subsonic for M<1,
supersonic for M>1 and transonic if the flow has both supersonic and subsonic regions.

4.1 Modified shock tube problem

This test case describes a shock tube problem of the Sod type [41]. The primary and
the Voronoi dual meshes used for the simulations are shown in Fig. 6. We consider a
rectangular domain [0,1]×[0,0.4] and discretize it with 100 nodes in the direction of the
flow, and 80 nodes along the flow cross-section. The left state is given by (ρL,uL,vL,pL)=
(1.0,0.75,0.0,1.0) and the right state is given by (ρR,uR,vR,pR)= (0.125,0.0, 0.0,0.1), with
the initial discontinuity along x=0.3. Time integration is performed using SSP-RK3 with
CFL=0.3.

The Roe scheme gives an entropy violating jump in the expansion region where the
flow becomes sonic, as shown in Fig. 7. This is not surprising as we have not added
any entropy fix to the standard Roe scheme [38]. However, both the KEPES and KEPES-
TeCNO schemes, being entropy stable, are able to remedy this issue to a large extent.
The comparison in Fig. 8 shows that the high-resolution KEPES-TeCNO scheme is sig-
nificantly more accurate as compared to KEPES. Convergence is demonstrated in Fig. 9,
where the solutions are evaluated using KEPES-TeCNO on three levels of uniform grid
refinements, with the number of vertices along the streamwise direction being N = 100,
200 and 400 respectively.

Note that KEPES and KEPES-TeCNO also give rise to a small jump near the sonic
point, which reduces with mesh refinement unlike the jump observed with the Roe scheme
(without entropy fix). This jump could be attributed to the absence of the right amount
of dissipation. Using the entropy consistent modification (3.11) can fix this issue, as can
be seen in Figs. 10 and 11. Focusing on the region near the sonic point in Figs. 10(b) and
10(b), we can observe that for αEC=1/6 the jump reduces drastically.
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(a) Primal grid (b) Voronoi dual grid

Figure 6: Grid used for shock tube problem.
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Figure 7: Modified shock tube problem using first-order schemes.
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Figure 8: Comparison of KEPES and KEPES-TeCNO schemes.

4.2 Supersonic flow over wedge

This test case involves a weak oblique shock which occurs when a supersonic flow is
‘turned into itself’ due to the presence of a wedge. The wedge is inclined at an angle of 10
degrees to the horizontal. The farfield Mach number is 2, with slip boundary conditions
on the wedge. The mesh (see Fig. 12) has 18848 nodes and we use median dual cells
as control volumes. Time integration is performed using LU-SGS. As can be seen in
Fig. 13, the shock profile is quite dissipated with KEPES. But, the minmod reconstruction
in KEPES-TeCNO scheme leads to a much sharper shock profile, that is comparable to
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Figure 9: Density plot; grid refinement study with KEPES-TeCNO.
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Figure 10: Density plot for N=100 and the KEPES scheme, with the entropy consistent modification.
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Figure 11: Density plot for N=100 and the KEPES-TeCNO scheme, with the entropy consistent modification.

the one computed by the Roe scheme with MUSCL type reconstruction and van Albada
limiter [45].
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(a) Primary (b) Median dual

Figure 12: Mesh for flow over wedge.

(a) KEPES (b) KEPES-TeCNO (c) Roe (MUSCL)

Figure 13: Mach number plots for a supersonic flow past a wedge.

4.3 Transonic flow past NACA-0012 airfoil

This is an example of a symmetric NACA-0012 airfoil placed in a free-stream Mach num-
ber of 0.85 and angle of attack of 2 degrees. The primary mesh and the corresponding
median dual mesh used for this test case are shown in Fig. 14. The flow develops shocks
both on the upper and lower airfoil surfaces. We compute this flow on a triangular grid
by considering the median dual cells, containing 180 points on the airfoil surface and
20 points on the farfield boundary which is a circle, with a total of 6402 vertices. Time
integration is performed using LU-SGS. The Mach contour plots in Fig. 15 show that
KEPES-TeCNO gives much better shock resolution than KEPES, and comparable to the
high-resolution Roe-MUSCL scheme.

The pressure coefficient for compressible flows is given by

Cp=
2

γM2
∞

(
p

p∞

−1

)
,

where p is the nodal pressure, while p∞ and M∞ are the farfield pressure and Mach
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(a) Primary (b) Median dual

Figure 14: Mesh for flow past NACA-0012 airfoil.

(a) KEPES (b) KEPES-TeCNO (c) Roe (MUSCL)

Figure 15: Mach number, 30 equally spaced contours between 0.04 and 1.7.

numbers respectively. We consider the nodal values of Cp on the surface of the airfoil,
as shown in Fig. 16. The x-axis represents the normalized wingspan, while the y-axis
represents the inverted pressure coefficient. Thus, the upper surface of the wing, which
has a much lower pressure distribution as compared to the lower surface, appears at the
top of the plot. There is a sudden change in pressure across the shock that develops on
both surfaces, and is clearly visible in the Cp plots. The area enclosed by the graph in
the plots represents the lift experienced by the airfoil. Again, the high resolution KEPES-
TeCNO was indistinguishable in accuracy with the standard high resolution Roe-MUSCL
scheme.

4.4 Supersonic flow past cylinder

Most shock-capturing numerical schemes, except for a few highly dissipative schemes
like the Rusanov scheme, can lead to numerical instabilities, particularly when approx-
imating strong shocks. One of the most common anomalies is the carbuncle phenomenon
[36,37], which is produced when computing a supersonic flow past a blunt body such as
a circular cylinder. Instead of having a smooth bow shock profile upstream of the cylin-
der, a protuberance appears ahead of the bow shock along the stagnation line. This effect
seems to be more pronounced the more closely the grid is aligned to the bow shock.

Simulations were performed for the inviscid supersonic flow over a semi-cylinder.
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Figure 16: Pressure coefficient plots of the surface of the airfoil with p∞ =0.9886, M∞ =0.85.

(a) Primal grid (b) Median dual grid (c) Voronoi dual grid

Figure 17: Grid used for supersonic cylinder problem.

The primal triangular grid and the corresponding median and Voronoi dual meshes are
shown in Fig. 17. The Voronoi cells lead to nearly structured type grids and can thus lead
to carbuncle problem since the shock will be aligned with the cell faces to a greater extent
than for the median dual cells. At free-stream Mach number M∞=2, KEPES and KEPES-
TeCNO give carbuncle free solutions on both median dual and Voronoi dual meshes,
as can be seen in Fig. 18. The bow shock is well resolved in each case. Similar results
were observed when the schemes were used to simulate an almost hypersonic flow with
M∞=20, as shown in Fig. 19.
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(a) KEPES (b) KEPES-TeCNO (c) KEPES (d) KEPES-TeCNO

Figure 18: Density contours for supersonic cylinder, M∞ = 2. (a)-(b) median dual grid; (c)-(d) Voronoi dual
grid.

(a) KEPES (b) KEPES-TeCNO (c) KEPES (d) KEPES-TeCNO

Figure 19: Density contours for supersonic cylinder, M∞ = 20. (a)-(b) median dual grid; (c)-(d) Voronoi dual
grid.

4.5 Subsonic flow past cylinder

We consider an inviscid flow past a full cylinder at a low Mach number of 0.3. The mesh
used for this problem is shown in Fig. 20. The steady state solution has both top-bottom
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(a) Primary (b) Median dual

Figure 20: Mesh for a subsonic flow past a cylinder.

(a) KEPES (b) KEPES-TeCNO (c) KEPES2

Figure 21: Mach number, 30 equally spaced contours between 0.001 and 0.7.

and left-right symmetry. The first-order KEPES solution loses its symmetry due to the
excessive dissipation, as shown in Fig. 21. The KEPES-TeCNO does a much better job at
preserving the symmetry property, comparable to the approximate solution given by the
unlimited second-order KEPES2 scheme.

The flow under consideration is nearly isentropic, that is, the physical entropy of the
flow around the cylinder should be nearly constant. To demonstrate the ability of the
schemes to preserve this constancy, the entropy bounds obtained with each scheme and
their percentage deviation from the free-stream entropy value are mentioned in Table 1.
We notice that KEPES gives the largest positive deviation, KEPES2 gives almost negli-
gible positive deviation, while the limited KEPES-TeCNO scheme lies somewhere in be-
tween. Both the entropy stable schemes show no negative deviations, while the KEPES2
scheme gives almost negligible negative deviation. Although the KEPES2 performs the
best in this scenario, we cannot theoretically prove any stability estimates with it. More-
over, the unlimited KEPES2 would perform rather poorly in the presence of shocks.
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Table 1: Physical entropy bounds, with free-stream s∞ =2.07147.

Scheme Minimum Maximum Percent deviation from s∞

KEPES 2.07147 2.08695 +0.747 % -0.000 %

KEPES-TeCNO 2.07147 2.07208 +0.029 % -0.000 %

KEPES2 2.07139 2.07153 +0.003 % -0.004 %

4.6 Step in wind tunnel

This test case is described in [51] and involves an inviscid supersonic flow past a step in
a wind tunnel which is impulsively started, with initial Mach number M=3. The wind
tunnel is one unit length wide and three unit lengths long. The step is 0.2 unit length high
and is located 0.6 unit length from the left-hand end of the tunnel. At the left boundary,
one imposes an inflow boundary condition. The exit boundary condition on the right has
no effect on the flow, because the exit velocity is always supersonic. Along the top and
bottom walls of the tunnel slip boundary conditions are applied. The corner of the step
is the center of a rarefaction fan and hence is a singular point of the flow.

The flow develops several shocks which undergo further reflections. A shock triple
point intersection leads to the formation of a slip line. The grid is adapted to be finer
near the corner where the spacing is of size ≈ 0.002 while the maximum spacing is of
size ≈ 0.01. The total number of grid-points is 70970. A close-up of the mesh near the
corner is shown in Fig. 22. The density contours at time t=4 are shown in Fig. 23 using
the KEPES-TeCNO scheme which is able to resolve the main features of the flow very
accurately.

(a) Primary (b) Median dual

Figure 22: Mesh near the corner of the forward step.

5 Conclusions

We consider symmetrizable systems of conservation laws in two space dimensions and
design a high-resolution entropy stable finite volume scheme to approximate them. The
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Figure 23: Density, 50 contour lines between 0.5 and 7.1 using KEPES-TeCNO at t=4.

underlying computational domain is discretized using triangles and a finite volume
scheme is proposed by combining entropy conservative fluxes and numerical dissipa-
tion operators, based on piecewise linear reconstruction that enforces a sign property. A
minmod limiter, satisfying the sign property is used. The resulting scheme is

• Entropy stable i.e, satisfies a discrete form of the entropy inequality. Given that the
underlying entropy is strictly convex, the discrete entropy inequality automatically
guarantees a bound on the approximate solutions in L2. To the best of our knowl-
edge, the proposed KEPES-TeCNO scheme is one of the first high-resolution finite
volume schemes that are shown to be entropy stable on unstructured grids.

• Robust in approximating complex flow features such as strong (supersonic) shocks,
shock reflections, slip lines and near incompressible flows. The robustness of the
scheme is demonstrated through a large number of benchmark numerical exper-
iments that illustrate that the KEPES-TeCNO is at least as accurate as a standard
high-resolution Roe-MUSCL method.

Thus, we design a scheme whose accuracy is at least comparable to existing high-
resolution schemes but at the same time, the proposed scheme has rigorous stability
properties. The numerical tests show that the scheme is able to preserve positivity of den-
sity and pressure without any additional treatment on unstructured grids. The current
scheme is restricted to second-order resolution. Even higher-order schemes are currently
being investigated. Future work will present the extension of the proposed methodology
to the Navier-Stokes equations and to three space dimensions.

Acknowledgments

This research work benefited from the support of the AIRBUS Group Corporate Foun-
dation Chair in Mathematics of Complex Systems, established in TIFR/ICTS, Bangalore.
The research of SM was partly supported by ERC StG NN. 306279 SPARCCLE. SM dedi-
cates this paper to Eitan Tadmor on his 60th birthday.



D. Ray et al. / Commun. Comput. Phys., 19 (2016), pp. 1111-1140 1137

A Roe-type dissipation for Euler equations

The Roe-type dissipation matrix is given by

Dij =RijΛijR
⊤
ij ,

where

R=




1 1 0 1
u−añ1 u ñ2 u+añ1

v−añ2 v −ñ1 v+añ2

H−auñ
1
2 |u|

2 uñ2−vñ1 H+auñ


S

1
2 ,

S=diag
(

ρ
2γ ,

(γ−1)ρ
γ , p,

ρ
2γ

)
,

Λ=diag
(
|un−a|, |un|, |un|, |un+a|

)
.

In the above expressions, S is the scaling matrix for the eigenvectors, ñ is the unit outward
normal on the faces, uñ=u·ñ, a=

√
γp/ρ is the speed of sound in air and H=a2/(γ−1)+

|u|2/2 is the specific enthalpy. The following average states are used to evaluate the
above matrices:

u=uij, ρ= ρ̂ij, p=
ρij

2βij

, a=

√
γ

2β̂ij

. (A.1)

The KEPES scheme (see Section 4) is able to resolve stationary contact discontinuities
exactly, if the speed of sound a in the dissipation operator Dij evaluated using the ex-
pression described in (A.1) [8].
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